Article

Thiacyclophane Cages and Related Bi- and Tripodal Molecules via Transient Polysulfenic Acids

Maria Chiara Aversa,[†] Anna Barattucci,^{*,†} Paola Bonaccorsi,^{*,†} Cristina Faggi,[‡] and Teresa Papalia[†]

Dipartimento di Chimica organica e biologica, Università degli Studi di Messina, Salita Sperone 31 (vill. S. Agata), 98166 Messina, Italy, and Centro Interdipartimentale di Cristallografia, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy

paola.bonaccorsi@unime.it

Received March 5, 2007

A series of bis- and tris-bridged thiacyclophane S-oxides, as racemates or *meso* products, have been synthesized with a new procedure. Starting from the corresponding thiols, in three steps, transient polyareneand polyarylmethane-sulfenic acids were generated in the presence of di- and triethynylbenzenes. The thermal *syn*-addition of these sulfenic acids onto the triple bonds of the unsaturated acceptors was conducted in CH₂Cl₂ at 40 °C. The concentration of sulfoxide precursors of sulfenic acid and the sulfoxide/acceptor molar ratio addressed the *syn*-addition toward open-chain benzene sulfoxides or thiacyclophane S-oxides. Complete stereochemical control was observed in some reactions between polysulfenic acids and ethynylbenzenes, where the *meso* dithiacyclophane S,S'-dioxides were obtained exclusively, whereas 1:1 mixtures of *meso/rac* dithiacyclophanes S,S'-dioxides were isolated as products of other reactions. In almost all the cases, the obtained compounds were separated by column chromatography. The structure assignment of the new heterophanes was done on the basis of their diagnostic NMR spectra and X-ray crystallographic analysis of some of them. Open-chain polysulfinyl and polysulfinylmethyl benzenes, obtained as *meso/rac* mixtures, were separated and the products were fully characterized. Both synthesized cages, including trithia[3₃](1,3,5)cyclophane S,S',S''-trioxides, and bi- and tripodal benzene sulfoxides, appear promising in the field of coordination and material chemistry.

Introduction

Bridged aromatic compounds, such as cyclophanes (CPs), are potential building blocks in the design of molecules for catalytic processes or electronic devices. The restricted conformational mobility of these compounds, their intrinsic symmetry, and their structural features, some of which are very exotic, addressed the attention on the development of a number of synthetic pathways.¹ ThiaCPs² represent significant components of the CP family because the presence of sulfur atoms into the skeleton of the cage allows a number of possible transformations of the hetero function³ and some interesting conformational changes.⁴ Nevertheless, the methodologies developed for obtaining thiaCPs suffer some limitations, such as long reaction times and yields dependent on the structural features of the starting products, which required slow addition of the reactants.⁵

Very recently, we envisaged that the *syn*-addition of polyarene- and poly-arylmethane-sulfenic acids onto the triple bonds

10.1021/j0070449b CCC: \$37.00 © 2007 American Chemical Society Published on Web 05/16/2007

[†] Università degli Studi di Messina.

[‡] Università degli Studi di Firenze.

⁽¹⁾ Tsukamoto, K.-i.; Sahade, D. A.; Taniguchi, M.; Sawada, T.; Thiemann, T.; Mataka, S. *Tetrahedron Lett.* **1999**, *40*, 4691–4692. Wang, H.; Wulff, W. D.; Rheingold, A. L. J. Am. Chem. Soc. **2000**, *122*, 9862– 9863. Gevorgyan, V.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. **2001**, *66*, 2743–2746. Christensen, C. A.; Batsanov, A. S.; Bryce, M. R.; Howard, J. A. K. J. Org. Chem. **2001**, *66*, 3313–3320. Park, K. K.; Han, I. K.; Park, J. W. J. Org. Chem. **2001**, *66*, 6800–6802. Camacho, D. H.; Salo, E. V.; Guan, Z. Org. Lett. **2004**, *6*, 865–868. Kim, J.; Kim, Y. K.; Park, N.; Hahn, J. H.; Ahn, K. H. J. Org. Chem. **2005**, *70*, 7087–7092. Birsa, M. L.; Jones, P. G.; Braverman, S.; Hopf, H. Synlett **2005**, 640–642. Hinrichs, H.; Boydston, A. J.; Jones, P. G.; Hess, K.; Herges, R.; Haley, M. M.; Hopf, H. Chem.—Eur. J. **2006**, *12*, 7103–7115.

SCHEME 1

of polyethynyl benzenes could represent an original and efficient methodology for the construction of thiaCP S-oxides.

Sulfenic acids are implicated in a wide variety of relevant chemical and biochemical reactions and, although the vast majority of them are too unstable to be isolated, they cannot be considered just casual intermediates in organic and biological processes. For instance, the syn-addition of sulfenic acids onto carbon-carbon triple bonds gives a reliable, easy way to obtain vinyl sulfoxides in mild conditions without the need for acidic or basic catalysis and with some stereo- and regio-selectivities in the formation of the S-epimeric mixtures of sulfoxides, induced by the structural features of the sulfenic acid and the electronic ones of its unsaturated acceptor. This reaction and its applications in organic synthesis have been widely studied by us, showing that (i) it is possible to generate sulfenic acids in three steps starting from the suitable thiols; in the thermolysis, that represents the last step, with the sulfenic acid generated in the presence of the unsaturated acceptor leading to sulfoxide

(3) Mascal, M.; Kerdelhué, J.-L.; Blake, A. J.; Cooke, P. A. Angew. Chem., Int. Ed. 1999, 38, 1968–1971.

(4) Mitchell, R. H. J. Am. Chem. Soc. 2002, 124, 2352-2357.

formation;⁶ (ii) it is possible to generate enantiopure sulfenic acids by synthesizing their precursors with an enantiopure alkyl or aryl residue;⁷ and (iii) the generation of sulfenic acids carrying an aminoacidic or a glycosidic residue corresponds to a direct strategy for the stereocontrolled preparation of sulfinyl molecules possessing biological active residues.⁸

In this paper we describe the three-step generation of transient diarenesulfenic acids and di- and triarylmethanesulfenic acids,⁹ starting from the corresponding thiols, and the results of their additions onto the triple bonds of di- and triethynyl benzenes. The presence of elements of symmetry, such as C_2 and C_3 axes, in some of the aromatic polysulfenic acids and acceptors, the formation of stereogenic sulfoxide sulfur atoms, the partner choice in the addition sulfenic acid/triple bond, and the nature and conditions of the *syn*-addition allowed the preparation of π -electron-rich molecules, such as the predicted thiaCP S-oxides, together with open-chain polysulfinyl and polysulfinylmethyl benzenes, quite promising in the field of organic materials.

Results and Discussion

Synthesis of the Precursors of Polysulfenic Acids 16–20. Thiols 1–3 (Scheme 1) are commercially available, while thiols

^{(2) (}a) Sato, T.; Wakabayashi, M.; Hata, K.; Kainosho, M. *Tetrahedron* **1971**, 27, 2737–2755. (b) Fujise, Y.; Nakasato, Y.; Itô, S. *Tetrahedron Lett.* **1986**, 27, 2907–2908. (c) Bruhin, J.; Gerson, F.; Martin, W. B., Jr.; Novotny, H. J. Am. Chem. Soc. **1988**, 110, 6377–6384. (d) Laali, K. K.; Okazaki, T.; Mitchell, R. H. J. Chem. Soc., Perkin Trans. 2 **2001**, 745–748. (e) Yasutake, M.; Araki, K.; Zhou, M.; Nogita, R.; Shinmyozu, T. *Eur. J. Org. Chem.* **2003**, 1343–1351. (f) Nogita, R.; Matohara, K.; Yamaji, M.; Oda, T.; Sakamoto, Y.; Kumagai, T.; Lim, C.; Yasutake, M.; Shino, T.; Jefford, C. W.; Shinmyozu, T. J. Am. Chem. Soc. **2004**, 126, 13732–13741.

⁽⁵⁾ Givens, R. S.; Olsen, R. J.; Wylie, P. L. J. Org. Chem. 1979, 44, 1608–1613. Mitchell, R. H.; Vinod, T. K.; Bodwell, G. J.; Bushnell, G. W. J. Org. Chem. 1989, 54, 5871–5879. Chiu, J.; Hart, H.; Ward, D. L. J. Org. Chem. 1993, 58, 964–966. Rajakumar, P.; Dhanasekaran, M.; Selvam, S.; Aravindan, P. G.; Velmurugan, D. J. Org. Chem. 2005, 70, 3267–3270.

⁽⁶⁾ Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.; Jafari, S. M. A.; Jones, D. N. *Tetrahedron Asymmetry* **1992**, *3*, 701–704.

 ⁽⁷⁾ Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.; Jones,
D. N. J. Org. Chem. 1997, 62, 4376–4384.

^{(8) (}a) Aucagne, V.; Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.; Rollin, P.; Tatibouët, A. *J. Org. Chem.* **2002**, *62*, 4376– 4384. (b) Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.; Jones, D. N. *J. Org. Chem.* **2005**, *70*, 1986–1992. (c) Aversa, M. C.; Barattucci, A.; Bilardo, M. C.; Bonaccorsi, P.; Giannetto, P.; Rollin, P.; Tatibouët, A. *J. Org. Chem.* **2005**, *70*, 7389–7396.

⁽⁹⁾ Tripolt, R.; Nachbaur, E. Phosphorus, Sulfur Silicon Relat. Elem. 1992, 65, 173–176.

TABLE 1. Generation of Sulfenic Acids and Their syn-Addition to Alkyne Acceptors in Dichloromethane at Reflux

entry	sulfoxide precursor (sulfenic acid)	acceptor of sulfenic acid	sulfox concn (mM)	sulfox/acceptor molar ratio	adducts ^a (yield %)	chromatographic eluant (EtOAc/petrol)
1	11 (16)	$p(HC \equiv C)_2 C_6 H_4$	60	1:4	21(20) + 22(20)	5:5
2	11 (16)	$m(\text{HC}=C)_2C_6H_4$	60	1:4	23(20) + 24(20)	5:5
3	11 (16)	$p(\text{HC}=C)_2C_6H_4$	10	1:1	25 (30)	9:1
4	11 (16)	$m(\text{HC}=C)_2C_6H_4$	10	1:1	27(15) + 26(15)	9:1
5	12 (17)	$p(\text{HC}=\text{C})_2\text{C}_6\text{H}_4$	60	1:4	34(20) + 35(20)	5:5
6	12 (17)	$m(\text{HC}=C)_2C_6H_4$	60	1:4	36(10) + 37(10) + 40(10) + 39(10)	5:5 up to 8:2
7	12 (17)	$p(\text{HC}=\text{C})_2\text{C}_6\text{H}_4$	10	1:1	38 (30)	8:2
8	12 (17)	$m(\text{HC}=C)_2C_6H_4$	10	1:1	40(15) + 39(15)	8:2
9	13 (18)	$p(\text{HC}=C)_2C_6H_4$	10	1:1	30(15) + 31(15)	2.5:7.5
10	13 (18)	$p(\text{HC}=C)_2C_6H_4$	60	1:4	30(35) + 31(35)	2.5:7.5
11	13 (18)	$m(\text{HC}=C)_2C_6H_4$	10	1:1	32(15) + 33(15)	3:7
12	13 (18)	$m(\text{HC}\equiv C)_2C_6H_4$	60	1:4	32(30) + 33(30)	3:7
13	14 (19)	HC=CC ₆ H ₅	60	1:9	42(5) + 43(15)	8:2
14	14 (19)	$sym(HC \equiv C)_3C_6H_3$	60	1:9	44(5) + 45(12) + 48/49(15)	6:4 up to 10:0
15	14 (19)	$p(\text{HC}=C)_2C_6H_4$	60	1:9	46(8) + 47(20)	8:2
16	14 (19)	$svm(HC \equiv C)_3C_6H_3$	10	1:1	48/49 (20)	10:0
17	15 (20)	$sym(HC \equiv C)_3C_6H_3$	10	1:1	51 (10) + 52 (10)	10:0

^{*a*} If more then one adduct is obtained, the products are reported in order of increasing retention times. Several products of sulfenic acid self-condensation are always detected in the crudes by ¹H NMR analysis.

4 and **5** were prepared following literature procedures.¹⁰ The reaction of each of these compounds with diethyl isopropylidenemalonate in the presence of benzyltrimethylammonium hydroxide (Triton B), at -78 °C, led to the corresponding sulfides **6**–**10** in good yields. Oxidation of these sulfides to sulfoxides **11–15**, respectively, was conducted in dichloromethane, using *m*-CPBA as the oxidizing agent at -78 °C. Sulfoxides **11–15**, which represent the direct precursors of the corresponding transient polysulfenic acids **16–20**, were obtained in almost quantitative yield, not needing further purification before undergoing the thermolysis toward sulfenic acids.

The choice of such sulfinyl precursors 11-15 was done taking into account previously disappointing experiments. At the beginning of this investigation, we decided to thermolyze 2-cyanoethyl sulfoxides coming from the nucleophilic addition of thiols 1-5 to acrylonitrile,¹¹ followed by the oxidation to sulfoxides. On the basis of our experience,^{8c} 2-cyanoethyl sulfoxides can be easier handled than (1,1-diethoxycarbonyl-2-methyl)-2-propyl sulfoxides: 2-cyanoethyl sulfoxides can be purified by column chromatography and left on the bench for quite a long time. On the contrary, sulfoxides 11-15 must be prepared and immediately used to avoid the spontaneous formation of products coming from self-condensation of the corresponding sulfenic acids. However, in the present case, the crude mixtures of 2-cyanoethyl sulfoxides were found difficult to treat for the high insolubility of the sulfoxide products, which were detected by proton magnetic resonance, but could not be easily separated and fully characterized. For these reasons, they were discarded.

Synthesis of thiaCP S-Oxides 25–27, 38–40, 48, 49, 51, 52, and Open-Chain Bis and Tris Sulfinyl and Sulfinylmethyl Benzenes 21–24, 30–37, 42–47. The reaction conditions adopted for the generation of sulfenic acids 16–20 and their *syn*-addition to alkyne acceptors are reported in Table 1.

When 1,4-benzenedimethanesulfenic acid (16) was generated from sulfoxide 11 in the presence of p- or m-diethynylbenzene in 1:4 sulfoxide/acceptor molar ratio, 1,4-bis(sulfinylmethyl)benzenes 21-24 were obtained, each pair in 40% yield (Scheme 2). Compounds 21/22 and 23/24 were 1:1 mixtures of meso compound and racemate that could be easily separated by column chromatography (Table 1, entries 1 and 2). A 1:1 molar ratio of sulfoxide 11 with each of the two diethynylbenzenes and a reduced concentration of sulfenic acid precursor in dichloromethane allowed the formation of dithiaCP S-oxides 25-27. The syn-addition of transient 1,4-benzenedimethanesulfenic acid (16) onto the triple bonds of *p*-diethynylbenzene led to the obtainment, in 30% yield, of adduct 25 as the unique product of the reaction (Table 1, entry 3) to which the meso structure was unambiguously attributed by NMR (see section below). ThiaCPs 26 and 27 were obtained, in a 1:1 ratio of meso compound and racemate, respectively, from the reaction of sulfenic acid 16 with *m*-diethynylbenzene (Table 1, entry 4). Subsequent oxidation of the 1:1 mixture of 26 and 27 gave bis-sulfone 29 as a proof that the two diastereoisomers 26 and 27 differ only in the configuration at one sulfinyl sulfur atom, while bissulfone 28 was the expected product of the m-CPBA oxidation of paraCP 25.

The stereochemical outcome of the reactions between sulfenic acid **16** and the two diethynylbenzenes for the preparation of thiaCP S-oxides was quite unexpected; when *p*-diethynylbenzene was the acceptor, a complete stereoselection was observed, whereas in the addition of transient compound **16** to *m*-diethynylbenzene, no stereoselection at all was pointed out. To further explore these results, the generation of 1,3-benzene-dimethanesulfenic acid (**17**) from the sulfinyl precursor **12** and its addition onto the triple bonds of *p*- and *m*-diethynylbenzenes were performed in the same conditions we have used for sulfenic acid **16** (Scheme 3).

Sulfoxide concentration and the sulfoxide/acceptor molar ratio addressed the *syn*-addition toward the open-chain benzene derivatives 34-37 (Table 1, entries 5 and 6) or the thiaCP S-oxides 38-40 (Table 1, entries 7 and 8). Complete stereochemical control was again observed in the reaction of sulfenic acid 17 with the *p*-diethynylbenzene, where the *meso* thiaCP S-oxide 38 was obtained in 30% yield. A 1:1 mixture of the *meso* macrocycle 39 and the racemate 40 was obtained in 30% total yield by the addition of the transient 17 to

⁽¹⁰⁾ Houk, J.; Whitesides, G. M. J. Am. Chem. Soc. 1987, 109, 6825-6836.

⁽¹¹⁾ For 3,3'-(*m*-phenylenedithio)dipropionitrile, see: Kuliev, A. M.; Aliev, S. M. Zh. Org. Khim. **1967**, 3, 1045–1047; Chem. Abstr. **1967**, 67, 108360.

JOC Article

SCHEME 2

SCHEME 3

m-diethynylbenzene, the two products were easily separated by column chromatography and their mixture oxidized to sulfone 41.

These results, identical from a stereochemical point of view to the ones observed for sulfenic acid **16**, suggest a different attack pathway for compounds **16** and **17** onto the electronically different triple bonds of the two diethynylbenzenes. At the actual level of our knowledge, indeed, the only difference we can surely envisage is the widespread π -conjugation characterizing *p*-diethynylbenzene, against the more localized triple bonds of the *m*-diethynylbenzene. Noteworthy are the results shown in Table 1 as entry 6 compared to the analogous results in entry 8; when the two partners of the double *syn*-addition are both *m*-substituted, a relevant amount of CPs is obtained even if the concentration of the sulfoxide precursor is the one identified as more suitable to the formation of open-chain benzene derivatives. We suggest that the attack of the one sulfenic function of **17** onto one triple bond in *m*-diethynylbenzene is preferably followed by the intramolecular cyclization affording metaCPs **39/40** instead of the expected sole formation of open-chain benzene derivatives **36/37**. This can be ascribed to the favorable geometrical contiguity of the reactive moieties in the second step of the intramolecular cyclization toward CPs.

We have also prepared the precursors of 1,3-benzenedisulfenic acid (18; Scheme 3) that was generated in the presence of the two diethynylbenzene acceptors and gave in good yields the open-chain sulfoxides 30-33 as 1:1 *meso/rac* mixtures, separable by column chromatography (Table 1, entries 10 and 12). The same reactions were performed in diluted solutions and sulfoxide/acceptor 1:1 molar ratio (Table 1, entries 9 and 11); again, sulfoxides 30-33 were obtained, but in reduced yields.

Later we turned our attention to the synthesis of thiaCPs with a "cylindrical" structure, because they appear as attractive cages, able to participate in metal ion complexation.³ For this purpose, we began with a model reaction and synthesized 1,3,5-tris-

(sulfinylmethyl)benzene 14 (Scheme 1) as the precursor of the "three-branched" sulfenic acid 19, which was thermolyzed in dichloromethane in the presence of phenylacetylene, with the idea of trapping the three sulfenic functions and proving the existence of the transient intermediate 19. Actually, a 1:3 mixture of tripodal sulfoxides 42 and 43 was obtained in 20% total yield, as shown in Scheme 4 (Table 1, entry 13). The synaddition of sulfenic acid 19 to an equimolecular quantity of 1.3.5-triethynylbenzene in the reaction conditions reported in Table 1 (entry 16) led to the formation of the thiaCP S-oxides 48 and 49, as two diastereomeric mixtures of racemates in about 1:1 ratio, respectively, that were converted into one sulfonyl derivative 50 by oxidation with m-CPBA. The structural differences between the cage 48, possessing a C_3 axis of symmetry, and the cage 49, where only two of the three sulfinyl sulfur atoms show the same configuration, were clear once we obtained the "thiacylindrophanes" 51 and 52 as an approximate 1:1 mixture. Compounds 48 and 49 were not completely separable by column chromatography, while if the 48/49 mixture was incompletely dissolved in ethyl acetate, the mother liquors were enriched in 48 up to 90%. CPs 51 and 52, possessing three methyl substituents in one of the two benzene rings, could be separated and their spectra completely interpreted (see section below). Cages 51 and 52 were the products of the syn-addition of sulfenic acid 20 to 1,3,5-triethynylbenzene in the same conditions of reaction adopted for the preparation of 48 and 49 (Table 1, entry 17). The mixture 51/52 was quantitatively converted in sulfone 53.

Finally, we directed our interest toward the synthesis of other tripodal molecules such as **44** and **45** and **46** and **47**, shown in Scheme 4. Similar compounds have demonstrated a certain encapsulating tendency or stimulating coordination capabilities due to the presence of the sulfinyl functions.¹² Furthermore, they possess carbon–carbon triple bonds that can be used for subsequent *syn*-additions of arenesulfenic acids, thereby building dendrimeric structures. Sulfoxides **46** and **47** were obtained in

the reaction of sulfenic acid **19** with *p*-diethynylbenzene (Table 1, entry 15), while compounds **44** and **45** were the products of the reaction between the transient **19** and the symmetrical triethynylbenzene in the reaction conditions shown in Table 1, entry 14. In this last reaction, an almost equal quantity of the cages **48** and **49** was also obtained, analogously to the results in entry 6.

Structure Assignments. The presence of two stereogenic sulfinyl sulfur atoms into the thiaCP cage of compounds 25–27 and 38–40, and in the open-chain benzene derivatives 21–24 and 30–37, led to the formation of racemates and/or *meso* products.

The structure assignment of dithiaCP S,S'-oxides, with at least a *p*-substituted aromatic ring (25–27, 38), was easily done on the basis of their diagnostic ¹H NMR spectra. The *meso* CPs 25, 26, and 38 were unequivocally identified because their spectra showed no *ortho* spin–spin couplings, owing to the symmetry plane perpendicularly cutting the *p*-disubstituted aromatic ring and bisecting its two HC/CH carbon–carbon bonds. The corresponding $J_{ortho} = 7.9$ Hz was instead measured for *rac*-1,12-dimethylene-2,11-dithia[3.3]parametacyclophane 2,11-dioxide (27).

The attribution of the structure to metaCP **39** was done by means of X-ray crystallographic analysis (Figure 1). *meso*-1,-12-Dimethylene-2,11-dithia[3.3]metametacyclophane 2,11-dioxide (**39**), with the two sulfinyl oxygen atoms pointing away from the methylene moieties, shows a *syn*-chair-chair (Scc) conformation, in line with the conformational studies already conducted on this kind of molecule.⁴ In the solid state, the two aromatic rings of **39** are not coplanar and their planes form an angle of 28.74 (0.16)°, with the distance between the corresponding two centroids being 3.677 Å.

The ¹H NMR parameters are very similar for the open-chain benzene derivatives 21-24 and 30-37, aside from their stereochemistry of *meso* or racemate compounds. Again, the configurational nature of *rac*-1,4-bis{[1-(4-ethynylphenyl)-ethenylsulfinyl]methyl}benzene (21) was assigned on the basis of the X-ray investigation. Figure 2 shows the asymmetric unit

⁽¹²⁾ Yang, C.; Wong, W.-T. J. Mater. Chem. 2001, 11, 2898–2900. Li, J.-R.; Bu, X.-H.; Zhang, R.-H. Eur. J. Inorg. Chem. 2004, 1701–1704.

FIGURE 1. Molecular structure of **39**; ellipsoids are drawn with 50% probability; a chloroform molecule is cocrystallized.

FIGURE 2. Molecular structure of racemate **21**; ellipsoids are drawn with 50% probability; a chloroform molecule is cocrystallized.

of **21**, where two independent enantiomeric molecules, unequivalent from a crystallographic point of view, cocrystallize with a chloroform molecule. Noteworthy is the different reciprocal orientations of the benzene rings in the two molecules, both showing the oxygen atoms pointing one toward the other. This last steric feature allows the foresight of effective coordination capabilities to electron-deficient species.¹³

All synthesized trisulfoxides 42-49, 51, and 52 show typically different NMR spectra in dependence of their C_3 symmetry or not. As an example, apart from aromatic (m, 7.6-7.5 ppm) and alkyne (s, 3.18 ppm) absorptions, the ¹H NMR spectrum of C₃sym-1,3,5-tris{[1-(3,5-diethynylphenyl)ethenylsulfinyl]methyl}benzene (44) shows a simple pattern of signals $[\delta 6.70 \text{ (s, 3H, H-2,4,6)}, 5.98, \text{ and } 5.73 \text{ (two d, 6H, }]$ $3 \times = CH_2$), 3.95 and 3.54 (AB system, 6H, $3 \times SCH_2$)], which divide into two 2:1 parts for $noC_3 sym-1,3,5$ -tris{[1-(3,5diethynylphenyl)ethenylsulfinyl]methyl}benzene (45) [δ 6.78 (s, 2H) and 6.75 (s, 1H) (H-2,4,6), 6.00 and 5.90 (two d, 2H, = CH₂), 5.99 and 5.83 (two d, 4H, $2 \times =$ CH₂), 3.91 and 3.59 (AB system, 4H, $2 \times$ SCH₂), 3.87 and 3.61 (AB system, 2H, SCH₂)]. Even the ¹³C NMR spectrum of **45** shows signal doubling for almost all the resonances (see Experimental Section).

Finally, the nearly quantitave *m*-CPBA formation of sulfones **28**, **29**, **41**, **50**, and **53** confirmed the structures assigned to their sulfoxide precursors **25**, **26/27**, **39/40**, **48/49**, and **51/52**, respectively.

Conclusions

We have described an original synthetic pathway for the preparation of new members of the class of thiaCP S-oxides.^{2a,c,d}

JOCArticle

The proposed strategy allowed the obtainment of these cages in mild reaction conditions. The key step of the synthetic process is the thermal syn-addition sulfenic acid/carbon-carbon triple bond. Because no acidic or basic conditions are required during this reaction, a broad range of substituents can be present in the structural skeleton of reactants. The easy access to the starting materials, the precursors of polysulfenic acids on one hand and the alkyne acceptors on the other, guarantees a wide range of possible modulations for the synthesis. The presence of stereogenic sulfinyl sulfur atoms into the thiaCP scaffold of the products caused the formation of meso and racemic cages but enabled in general the easy separation and characterization of the diastereomeric mixtures of such molecules. The thiaCP core holds methylene moieties in a favorable position for further transformations. Thus, these CPs can be useful for investigating new properties of this kind of cage and can also represent versatile starting materials for building new polycyclic structures. Finally, the significant structural features of tripodal molecules, such as 42-47, forward investigations on their coordinating properties as they are and/or after modifications of their skeleton.

Experimental Section

All reactions were monitored by TLC on commercially available aluminum supported silica gel plates (F 254), and the products were visualized with acidic vanillin solution. The NMR assignments are fully supported by attached proton test (APT) and homodecoupling experiments.

2,4,6-Trimethyl-1,3,5-benzenetrimethanethiol (5). Trithiol 514 was prepared according to Whitesides protocol.9 To commercially available 1,3,5-tris(bromomethyl)-2,4,6-trimethylbenzene (5.0 g, 12.53 mmol) suspended in EtOH (55 mL), thiourea (2.8 g, 36.78 mmol) was added, and the reaction mixture was maintained under stirring at rt overnight. The solvent was then removed under vacuum, a NaOH solution (3.0 g, 75 mmol in 50 mL H₂O) was added, and the mixture was refluxed for 4 h. HCl (6 N) was added to the mixture, which was cooled in an ice bath, up to pH 2. Finally, the water phase was extracted with $CHCl_3$ (4 × 30 mL), dried over Na₂SO₄, and concd under vacuum to give trithiol **5** as a white solid (2.9 g, 11.22 mmol, 90%). TLC R_f (petrol/EtOAc 8:2) 0.75; mp 143 °C; ¹H NMR (300 MHz, CDCl₃) δ 3.79 (d, ³J_{vic} = 6.5 Hz, 6H, 3 × CH₂), 2.44 (s, 9H, 3 × Me), 1.59 (t, ${}^{3}J_{vic} = 6.5$ Hz, 3H, $3 \times$ SH); ¹³C NMR (75 MHz, CDCl₃) δ 136.2 (C-1,3,5), 133.2 (C-2,4,6), 24.1 (3 × CH₂), 15.6 (3 × Me); Elem anal. Calcd (%) for C₁₂H₁₈S₃ (258.47): C, 55.76; H, 7.02. Found: C, 55.96; H, 6.88.

General Procedure A. To a stirred solution of the thiol in anhyd THF at -78 °C, Triton B (40 wt.% solution in MeOH) and, after 5 min, diethyl isopropylidenemalonate were added. The molar ratio of thiol/Triton B/malonate was 1:0.3:6 for the synthesis of disulfides **6**–**8**, and 1:0.45:9 for the synthesis of trisulfides **9** and **10**. The THF volume was related to the malonate amount as 0.5 mL THF/ malonate mmol. The mixture was allowed to reach rt spontaneously, and when the reaction appeared complete by TLC (petrol/EtOAc 8:2), it was quenched by water addition. The crude product was extracted three times with Et₂O. The combined organic layers were washed with brine and dried over Na₂SO₄. After filtration of the inorganic solid, the solvent was removed under reduced pressure,

⁽¹³⁾ Khiar, N.; Araújo, C. S.; Alcudia, F.; Fernández, I. J. Org. Chem. 2002, 67, 345–356.

⁽¹⁴⁾ Ciba-Geigy A.-G., Switzerland, Jpn. Kokai Tokkyo Koho, JP 54058751, 1979; *Chem. Abstr.* **1979**, *91*, 141655. Ohwa, M.; Yamoto, H.; Birbaum, J.-L.; Nakashima, H.; Matsumoto, A.; Oka, H., Ciba Speciality Chemicals Holding Inc., Switzerland, Ger. Offen., DE 19753655, 1998; *Chem. Abstr.* **1998**, *129*, 68148. Hirai, O.; Uchida, T.; Watanabe, I.; Fujinawa, M.; Tsukagoshi, I.; Fukushima, N.; Kobayashi, K.; Muramatsu, Y., Hitachi Chemical Co., Ltd., Japan, Jpn. Kokai Tokkyo Koho, JP 11130841, 1999; *Chem. Abstr.* **1999**, *131*, 6316.

and the oily residue containing the sulfide product was purified by flash column chromatography on silica gel.

1,4-Bis{[(**1,1-diethoxycarbonyl-2-methyl**)-**2-propylthio**]**methyl**}**benzene** (**6**). Commercial dithiol **1** (1.0 g, 5.87 mmol) was subjected to general procedure A. The reaction was completed after 0.5 h stirring at rt. Chromatographic purification (petrol/EtOAc 9.5:0.5) gave disulfide **6** (2.8 g, 4.91 mmol, 84%) as a white solid. TLC R_f 0.32; mp 70 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.24 (s, 4H, ArH), 4.21 (q, ³ J_{vic} = 7.1 Hz, 8H, 4 × OCH₂), 3.79 (s, 4H, 2 × SCH₂), 3.72 [s, 2H, 2 × CH(CO₂Et)₂], 1.58 (s, 12H, 2 × CMe₂), 1.29 (t, ³ J_{vic} = 7.1 Hz, 12H, 4 × OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (4 × CO), 136.1 (C-1,4), 129.3 (C-2,3,5,6), 61.3 (4 × OCH₂), 60.3 [2 × CH(CO₂Et)₂], 46.2 (2 × CMe₂), 33.0 (2 × SCH₂), 26.6 (2 × CMe₂), 14.1 (4 × OCH₂CH₃); IR (CHCl₃) 1753 and 1727 cm⁻¹ (CO); Elem anal. Calcd (%) for C₂₈H₄₂O₈S₂ (570.76): C, 58.92; H, 7.42. Found: C, 58.66; H, 7.39.

1,3-Bis{[(1,1-diethoxycarbonyl-2-methyl)-2-propylthio]methyl}benzene (7). Commercial dithiol 2 (1.0 g, 5.87 mmol) was subjected to general procedure A. The reaction was completed after 1 h of stirring at rt. Chromatographic purification (petrol/EtOAc 9.5:0.5) gave disulfide 7 (2.6 g, 4.56 mmol, 78%) as a white solid. TLC R_f 0.35; mp 55 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.3–7.2 (m, 4H, ArH), 4.22 (q, ${}^{3}J_{\text{vic}} = 7.1$ Hz, 8H, 4 × OCH₂), 3.80 (s, 4H, 2 × SCH₂), 3.72 [s, 2H, 2 × CH(CO₂Et)₂], 1.58 (s, 12H, 2 × CMe₂), 1.29 (t, ${}^{3}J_{\text{vic}} = 7.1$ Hz, 12H, 4 × OCH₂CH₃); 13 C NMR (75 MHz, $CDCl_3$) δ 167.1 (4 × CO), 137.5 (C-1,3), 129.8 (C-2), 128.7 (C-5), 127.9 (C-4,6), 61.3 (4 \times OCH₂), 60.2 [2 \times CH(CO₂Et)₂], 46.2 $(2 \times CMe_2)$, 33.2 $(2 \times SCH_2)$, 26.6 $(2 \times CMe_2)$, 14.1 $(4 \times CMe_2)$ OCH₂CH₃); MS (70 eV, EI) m/z (%) 570 (2) [M⁺], 336 (47), 209 (53), 201 (36), 155 (47), 105 (41), 99 (65), 44 (35), 28 (100); Elem anal. Calcd (%) for C₂₈H₄₂O₈S₂ (570.76): C, 58.92; H, 7.42. Found: C, 58.90; H, 7.35.

1,3-Bis[(**1,1-diethoxycarbonyl-2-methyl)-2-propylthio]benzene** (8). Commercial 1,3-benzenedithiol (**3**; 1.0 g, 7.03 mmol) was subjected to general procedure A. The reaction was completed after 24 h stirring at rt. Chromatographic purification (petrol/EtOAc 9:1) gave disulfide **8** (2.9 g, 5.34 mmol, 76%) as a pale yellow oil. TLC R_f 0.34; ¹H NMR (300 MHz, CDCl₃) δ 7.86 (t, ⁴J_{meta} = 1.7 Hz, 1H, H-2), 7.66 (dd, ³J_{ortho} = 7.6 Hz, ⁴J_{meta} = 1.7 Hz, 2H, H-4,6), 7.36 (t, ³J_{ortho} = 7.6 Hz, 1H, H-5), 4.21 (q, ³J_{vic} = 7.1 Hz, 8H, 4 × OCH₂), 3.53 [s, 2H, 2 × CH(CO₂Et)₂], 1.49 (s, 12H, 2 × CMe₂), 1.29 (t, ³J_{vic} = 7.1 Hz, 12H, 4 × OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ = 167.0 (4 × CO), 146.9 (C-2), 138.5 (C-4,6), 131.6 (C-1,3), 129.0 (C-5), 61.3 (4 × OCH₂), 60.2 [2 × CH-(CO₂Et)₂], 49.2 (2 × CMe₂), 26.7 (2 × CMe₂), 14.0 (4 × OCH₂CH₃); Elem anal. Calcd (%) for C₂₆H₃₈O₈S₂ (542.71): C, 57.54; H, 7.06. Found: C, 57.65; H, 7.35.

1,3,5-Tris{[(**1,1-diethoxycarbonyl-2-methyl)-2-propylthio**]**methyl**}**benzene (9).** Trithiol **4** (0.6 g, 2.77 mmol) was subjected to general procedure A. The reaction was completed after 0.5 h stirring at rt. Chromatographic purification (petrol/EtOAc 8.5:1.5) gave trisulfide **9** (1.3 g, 1.59 mmol, 57%) as a white solid. TLC R_f 0.12; mp 46 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.13 (s, 3H, ArH), 4.21 (split q, ³ J_{vic} = 7.1 Hz, 12H, 6 × OCH₂), 3.77 (s, 6H, 3 × SCH₂), 3.71 [s, 3H, 3 × CH(CO₂Et)₂], 1.57 (s, 18H, 3 × CMe₂), 1.29 (t, ³ J_{vic} = 7.1 Hz, 18H, 6 × OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (6 × CO), 137.8 (C-1,3,5), 128.6 (C-2,4,6), 61.3 (6 × OCH₂), 60.3 [3 × CH(CO₂Et)₂], 46.2 (3 × CMe₂), 33.1 (3 × SCH₂), 26.6 (3 × CMe₂), 14.1 (6 × OCH₂CH₃); IR (CHCl₃) 1753 and 1728 cm⁻¹ (CO); Elem anal. Calcd (%) for C₃₉H₆₀O₁₂S₃ (817.08): C, 57.33; H, 7.40. Found: C, 57.02; H, 7.44.

1,3,5-Tris{[(**1,1-diethoxycarbonyl-2-methyl**)-**2-propylthio**]**methyl**}-**2,4,6-trimethylbenzene** (**10**). Trithiol **5** (3.2 g, 12.38 mmol) was subjected to general procedure A. The reaction was completed after 18 h of stirring at rt. Chromatographic purification (petrol/EtOAc 9:1) gave trisulfide **10** (5.5 g, 6.40 mmol, 52%) as a white solid. TLC R_f 0.13; mp 73 °C; ¹H NMR (300 MHz, CDCl₃) δ 4.23 (m, 12H, 6 × OCH₂), 3.81 (s, 6H, 3 × SCH₂), 3.75 [s, 3H, 3 × CH(CO₂Et)₂], 2.43 (s, 9H, 3 × Ar*Me*), 1.64 (s, 18H, 3 × CMe₂), 1.30 (t, ${}^{3}J_{\text{vic}} = 7.2$ Hz, 18H, 6 × OCH₂CH₃); 13 C NMR (75 MHz, CDCl₃) δ 167.2 (6 × CO), 136.1 (C-1,3,5), 130.9 (C-2,4,6), 61.4 (6 × OCH₂), 60.4 [3 × CH(CO₂Et)₂], 45.9 (3 × CMe₂), 28.9 (3 × SCH₂), 26.3 (3 × CMe₂), 15.4 (3 × ArMe), 14.1 (6 × OCH₂CH₃); Elem anal. Calcd (%) for C₄₂H₆₀O₁₂S₃ (859.16): C, 58.71; H, 7.74. Found: C, 58.69; H, 7.44.

General Procedure B. *m*-CPBA (80%) was dissolved in CH₂-Cl₂ (10 mL/*m*-CPBA mmol) and added dropwise to a solution of the sulfide or sulfoxide in the same volume of CH₂Cl₂ at -78 °C (1 mol of *m*-CPBA for every molar site to be oxidized in the substrate). When the reaction appeared complete by TLC (EtOAc/ petrol 7.5:2.5), a 10% solution of Na₂S₂O₃ was added. Almost all experiments performed were concluded just after finishing the addition of the oxidant. The separated organic layer was washed twice with a saturated solution of NaHCO₃ and then twice with brine. Evaporation of the solvent gave the expected sulfoxide or sulfone.

1,4-Bis{[(**1,1-diethoxycarbonyl-2-methyl)-2-propylsulfinyl]-methyl**}**benzene 11.** Disulfide **6** (1.1 g, 1.93 mmol) was oxidized following the general procedure B. Disulfoxide **11** (*meso*/racemate 1:1) was obtained as an oil (1.1 g, 1.82 mmol, 94%) not needing any purification before its involvement in the next reaction steps. TLC R_f 0.19; ¹H NMR (300 MHz, CDCl₃) δ 7.35 (s, 4H, ArH), 4.23 (m, 8H, 4 × OCH₂), 3.92 and 3.66 (AB system, ² J_{gem} = 12.4 Hz, 4H, 2 × SCH₂), 3.85 [s, 2H, 2 × CH(CO₂Et)₂], 1.55 (s, 12H, 2 × CMe₂), 1.30 and 1.28 (two t, ³ J_{vic} = 7.1 Hz, 12H, 4 × OCH₂CH₃); ¹H NMR (300 MHz, C₆D₆) δ 7.25 (s, 4H, ArH), 4.01 and 4.00 [two s, 2H, 2 × CH(CO₂Et)₂], 4.0–3.8 (m, 8H, 4 × OCH₂), 3.43 and 3.38, 3.42 and 3.37 (two AB systems, ² J_{gem} = 12.4 Hz, 4H, 2 × SCH₂), 1.53 (s, 6H, CMe₂ of *meso*-compound), 1.523 and 1.517 (two s, 6H, CMe₂ of racemate), 0.87 and 0.86 (two t, ³ J_{vic} = 7.1 Hz, 12H, 4 × OCH₂CH₃).

1,3-Bis{[(**1,1-diethoxycarbonyl-2-methyl)-2-propylsulfinyl]methyl}benzene 12.** Disulfide **7** (0.8 g, 1.40 mmol) was oxidized following the general procedure B. Disulfoxide **12** (*meso*/racemate 1:1) was obtained as an oil (0.8 g, 1.33 mmol, 95%), not needing any purification before its involvement in the next reaction steps. TLC R_f 0.20; ¹H NMR (300 MHz, CDCl₃) δ 7.4–7.3 (m, 4H, ArH), 4.24 (m, 8H, 4 × OCH₂), 3.92 and 3.68 (or 3.66), 3.90 and 3.66 (or 3.68) (two AB systems, ² J_{gem} = 12.6 Hz, 4H, 2 × SCH₂), 3.85 [s, 2H, 2 × CH(CO₂Et)₂], 1.56, 1.55, and 1.54 (three s, 12H, 2 × CMe₂), 1.30 and 1.27 (two t, ³ J_{vic} = 7.2 Hz, 12H, 4 × OCH₂CH₃).

1,3-Bis[(**1,1-diethoxycarbonyl-2-methyl**)-**2-propylsulfinyl**]**benzene 13.** Disulfide **8** (1.0 g, 1.84 mmol) was oxidized following the general procedure B. Disulfoxide **13** (*meso*/racemate 1:1) was obtained as an oil (1.0 g, 1.74 mmol, 95%), not needing any purification before its involvement in the next reaction steps. TLC R_f 0.22; ¹H NMR (300 MHz, CDCl₃) δ 7.93 (t, ⁴J_{meta} = 1.5 Hz, 1H, H-2), 7.85 (dd, ³J_{ortho} = 7.7 Hz, ⁴J_{meta} = 1.5 Hz, 2H, H-4,6), 7.70 (t, ³J_{ortho} = 7.7 Hz, 1H, H-5), 4.3–4.2 (m, 8H, 4 × OCH₂), 3.73 and 3.72 [two s, 2H, 2 × CH(CO₂Et)₂], 1.31 (m, 24H, 2 x CMe₂, 4 × OCH₂CH₃).

1,3,5-Tris{[(**1,1-diethoxycarbonyl-2-methyl)-2-propylsulfinyl]methyl}benzene 14.** Trisulfide **9** (0.8 g, 0.98 mmol) was oxidized following the general procedure B. Trisulfoxide **14** (diastereomeric mixture) was obtained as an oil (0.8 g, 0.92 mmol, 94%), not needing any purification before its involvement in the next reaction steps. TLC R_f 0.15; ¹H NMR (300 MHz, CDCl₃) δ 7.33 (m, 3H, ArH), 4.3–4.2 (m, 12H, 6 × OCH₂), 3.9–3.6 (m, 6H, 3 × SCH₂), 3.85 [s, 3H, 3 × CH(CO₂Et)₂], 1.56, 1.55, and 1.53 (three s, 18H, 3 × CMe₂), 1.30 (t, ³J_{vic} = 7.2 Hz) and 1.28 (t, ³J_{vic} = 7.0 Hz) (18H, 6 × OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 and 166.3 (6 × CO), 132.8 (C-1,3,5), 132.2 (C-2,4,6), 62.0 and 61.9 (6 × OCH₂), 58.6 (3 × CMe₂), 55.4 [3 × CH(CO₂Et)₂], 51.8 (3 × SCH₂), 18.2 (3 × CMe₂), 14.0 (6 × OCH₂CH₃).

1,3,5-Tris{[(1,1-diethoxycarbonyl-2-methyl)-2-propylsulfinyl]methyl}-2,4,6-trimethylbenzene 15. Trisulfide 10 (0.8 g, 0.93 mmol) was oxidized following the general procedure B. Trisulfoxide 15 (diastereomeric mixture) was obtained as an oil (0.8 g, 0.88 mmol, 95%), not needing any purification before its involvement in the next reaction steps. TLC R_f 0.16; ¹H NMR (300 MHz, CDCl₃) δ 4.3–3.8 [m, 21H, 6 × OCH₂,3 × SCH₂,3 × CH(CO₂Et)₂], 2.40 (m, 9H, 3 × Ar*Me*), 1.63 and 1.60 (two s, 18H, 3 × CMe₂), 1.29 (m, 18H, 6 × OCH₂CH₃).

General Procedure C. A solution of the sulfoxide and commercial ethynyl acceptor in CH_2Cl_2 was maintained at reflux temp. When the reaction appeared complete by TLC (disappearance of starting sulfoxide required about one night), the solvent was removed under reduced pressure and the reaction crude was purified by flash column chromathography on silica gel (see Table 1).

rac-1,4-Bis{[1-(4-ethynylphenyl)ethenylsulfinyl]methyl}benzene (21). Compound 21 was prepared, together with its diastereoisomer 22, from 1,4-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid 16)] following procedure C (entry 1 in Table 1). The more mobile adduct 21 was isolated after chromatographic separation as a white solid melting at 145 °C. Single crystals suitable for X-ray structure were obtained by recrystallization from petrol/CHCl₃ 5:5. TLC R_f (EtOAc/petrol 7.5:2.5) 0.47; ¹H NMR (300 MHz, CDCl₃) δ 7.56 and 7.37 $(AA'BB'system, {}^{3}J_{ortho} = 8.3 \text{ Hz}, 8\text{H}, 2 \text{ x H-2'}, 3', 5', 6'), 7.01 \text{ (s,}$ 4H, H-2,3,5,6), 5.92 and 5.70 (two s, 4H, $2 \times = CH_2$), 3.97 and 3.56 (AB system, ${}^{2}J_{\text{gem}} = 13.2 \text{ Hz}$, 4H, 2 × SCH₂), 3.19 (s, 2H, 2 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ = 150.4 (2 × C=CH₂), 134.1 (C-1,4), 132.9 (2 × C-3',5'), 130.2 (C-2,3,5,6), 129.1 (2 × C-1'), 126.4 (2 × C-2',6'), 123.4 (2 × C-4'), 119.0 (2 × =CH₂), 82.7 (2 × C=CH), 79.1 (2 × =CH), 56.9 (2 × SCH₂); IR (CHCl₃) 1502, 1054, 929, 844 cm⁻¹; Elem anal. Calcd (%) for $C_{28}H_{22}O_2S_2$ (454.61): C, 73.98; H, 4.88. Found: C, 73.65; H, 5.11.

meso-1,4-Bis{[1-(4-ethynylphenyl)ethenylsulfinyl]methyl}benzene (22). Compound 22 was prepared, together with its diastereoisomer 21, from 1,4-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid (16)] following procedure C (entry 1 in Table 1). The less mobile adduct 22 was isolated after chromatographic separation as a white solid melting at 170 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.45; ¹H NMR (300 MHz, CDCl₃) δ 7.56 and 7.37 (AA'BB'system, ${}^{3}J_{\text{ortho}} = 8.5$ Hz, 8H, 2 × H-2',3',5',6'), 7.04 (s, 4H, H-2,3,5,6), 5.94 and 5.77 (two s, 4H, $2 \times =$ CH₂), 3.95 and 3.57 (AB system, ${}^{2}J_{gem} = 13.2$ Hz, 4H, 2 × SCH₂), 3.19 (s, 2H, 2 × \equiv CH); ¹³C NMR (75 MHz, CDCl₃) δ 150.6 (2 × C=CH₂), 134.2 (C-1,4), 132.9 (2 × C-3',5'), 130.2 (C-2,3,5,6), 129.4 (2 × C-1′), 126.4 (C-2′,6′), 123.3 (2 × C-4′), 118.9 $(2 \times = CH_2), 82.7 (2 \times C \equiv CH), 79.1 (2 \times \equiv CH), 57.4 (2 \times = CH))$ SCH₂); IR (CHCl₃) 1503, 1053, 928, 844 cm⁻¹; Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 73.94; H, 4.94.

More Mobile 1,4-Bis{[1-(3-ethynylphenyl)ethenylsulfinyl]methyl}benzene 23. Compound 23 was prepared, together with its diastereoisomer 24, from 1,3-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid (16)] following procedure C (entry 2 in Table 1). The more mobile adduct 23 was isolated after chromatographic separation as a white solid melting at 100 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.46; ¹H NMR (300 MHz, CDCl₃) δ 7.6–7.4 (m, 8H, 2 × H-2',4',5',6'), 7.04 (s, 4H, H-2,3,5,6), 5.93 and 5.73 (two s, 4H, $2 \times =$ CH₂), 3.97 and 3.58 (AB system, ${}^{2}J_{\text{gem}} = 13.3$ Hz, 4H, 2 × SCH₂), 3.17 (s, 2H, 2 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ 150.4 (2 × C=CH₂), 134.2 $(2 \times C-1,4)$, 133.0 $(2 \times C-4')$, 130.3 (C-2,3,5,6), 130.0 $(2 \times C-2')$, 129.3 (2 × C-5'), 129.2 (2 × C-1'), 126.9 (2 × C-6'), 123.3 (2 × C-3'), 119.1 (2 × =CH₂), 82.6 (2 × C=CH), 78.5 (2 × =CH), 57.1 (2 × SCH₂); Elem anal. Calcd (%) for $C_{28}H_{22}O_2S_2$ (454.61): C, 73.98; H, 4.88. Found: C, 73.86; H, 4.68.

Less Mobile 1,4-Bis{[1-(3-ethynylphenyl)ethenylsulfinyl]methyl}benzene 24. Compound 24 was prepared, together with its diastereoisomer 23, from 1,3-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid (16)] following procedure C (entry 2 in Table 1). The less mobile adduct 24 was isolated after chromatographic separation as a white solid melting at 105 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.44; ¹H NMR (300 MHz, CDCl₃) δ 7.6−7.4 (m, 8H, 2 × H-2',4',5',6'), 7.05 (s, 4H, H-2,3,5,6), 5.94 and 5.76 (two s, 4H, 2 × =CH₂), 3.96 and 3.58 (AB system, ²*J*_{gem} = 13.3 Hz, 4H, 2 × SCH₂), 3.17 (s, 2H, 2 × ≡CH); ¹³C NMR (75 MHz, CDCl₃) δ 150.4 (2 × *C*=CH₂), 134.2 (2 × C-1,4), 133.0 (2 × C-4'), 130.3 (C-2,3,5,6), 130.1 (2 × C-2'), 129.4 (2 × C-1'), 129.3 (2 × C-5'), 126.9 (2 × C-6'), 123.3 (2 × C-3'), 119.1 (2 × =CH₂), 82.6 (2 × *C*=CH), 78.5 (2 × ≡CH), 57.3 (2 × SCH₂); Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 73.68; H, 4.75.

meso-1,12-Dimethylene-2,11-dithia[3.3]paraparacyclophane 2,11-Dioxide (25). Following procedure C (entry 3 in Table 1), compound 25 was prepared from 1,4-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid (16)] and isolated after chromatographic purification as a white solid decomposing at 135 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.12; ¹H NMR (300 MHz, CDCl₃) δ 7.29 and 6.79 (two split d, ⁴J_{meta} = 2.3 Hz, 4H, H-14,-15,17,18), 7.14 and 6.46 (two split d, ⁴J_{meta} = 2.2 Hz, 4H, H-5,6,8,9), 6.17 and 6.16 (two d, ²J_{gem} = 1.0 Hz, 4H, 2 × =CH₂), 4.60 and 3.76 (AB system, ²J_{gem} = 11.6 Hz, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 152.6 (C-1,12), 136.1 and 129.8 (C-4,7,13,16), 133.3, 128.8, 127.2, and 127.1 (C-5,6,8,9,14,15,17,18), 115.3 (2 × = CH₂), 65.0 (C-3,10); MS (70 eV, EI) *m*/*z* (%) 328 (1) [M⁺], 104 (4), 44 (3), 32 (20), 28 (100); Elem anal. Calcd (%) for C₁₈H₁₆O₂S₂ (328.45): C, 65.82; H, 4.91. Found: C, 65.99; H, 5.02.

rac-1,12-Dimethylene-2,11-dithia[3.3]parametacyclophane 2,-11-Dioxide (27). Racemate 27 was prepared, together with its mesoisomer 26, from 1,3-diethynylbenzene and disulfoxide 11 [(via 1,4benzenedimethanesulfenic acid (16)] following procedure C (entry 4 in Table 1). The more mobile 27 was isolated after chromatographic purification as a white solid decomposing at 110 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.13; ¹H NMR (300 MHz, CDCl₃) δ 7.22 (t, ${}^{3}J_{\text{ortho}} = 9.2 \text{ Hz}$, 1H, H-15), 7.21 (AB dd, ${}^{3}J_{\text{ortho}} = 9.2 \text{ Hz}$, ${}^{4}J_{\text{meta}}$ = 0.5 Hz, 1H) and 7.16 (AB dd, ${}^{3}J_{\text{ortho}} = 9.2$ Hz, ${}^{4}J_{\text{meta}} = 1.7$ Hz, 1H) (H-14,16), 6.80 and 6.68 (two AB dd, ${}^{3}J_{\text{ortho}} = 7.9$ Hz, ${}^{4}J_{\text{meta}}$ = 1.7 Hz, 4H, H-5,6,8,9) 5.98 (dd, ${}^{4}J_{\text{meta}}$ = 1.7 and 0.5 Hz, 1H, H-18), 6.12 and 5.96 (two s, 4H, $2 \times = CH_2$), 4.74 and 3.70 (AB system, ${}^{2}J_{\text{gem}} = 12.2$ Hz, 4H, H₂-3,10); 13 C NMR (75 MHz, CDCl₃) δ 152.4 (C-1,12), 135.5 and 130.3 (C-4,7,13,17), 129.9, 129.3, and 127.4 (C-5,6,8,9,14,16), 127.9 (C-15), 123.8 (C-18), 118.0 (2 \times =CH₂), 64.4 (C-3,10); MS (70 eV, EI) m/z (%) 328 (53) [M⁺], 310 (17), 279 (31), 262 (16), 261 (20), 229 (21), 128 (16), 127 (16), 104 (100), 103 (19); Elem anal. Calcd (%) for $C_{18}H_{16}O_2S_2$ (328.45): C, 65.82; H, 4.91. Found: C, 65.54; H, 4.96.

meso-1,12-Dimethylene-2,11-dithia [3.3]parametacyclophane 2,11-Dioxide (26). meso-Compound 26 was prepared, together with its racemate isomer 27, from 1,3-diethynylbenzene and disulfoxide 11 [(via 1,4-benzenedimethanesulfenic acid (16)] following procedure C (entry 4 in Table 1). The less mobile CP 26 was isolated after chromatographic purification as a white solid decomposing at 100 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.12; ¹H NMR (300 MHz, CDCl₃) δ 7.18 (t, ${}^{3}J_{\text{ortho}} = 7.8$ Hz, 1H, H-15), 7.03 and 6.43 (two split s, 4H, H-5,6,8,9) 6.99 (dd, ${}^{3}J_{ortho} = 7.8$ Hz, ${}^{4}J_{meta} = 1.5$ Hz, 2H, H-14,16), 6.21 and 5.95 (two s, 4H, $2 \times = CH_2$), 6.02 (t, ${}^4J_{meta}$ = 1.5 Hz, 1H, H-18), 4.92 and 3.42 (AB system, ${}^{2}J_{gem} = 11.8$ Hz, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 153.5 (C-1,12), 136.3 and 130.8 (C-4,7,13,17), 130.1, 128.5 and 128.1 (C-5,6,8,9,14,-16), 128.2 (C-15), 127.5 (C-18), 117.7 (2 × =CH₂), 66.3 (C-3, 10); Elem anal. Calcd (%) for C₁₈H₁₆O₂S₂ (328.45): C, 65.82; H, 4.91. Found: C, 65.84; H, 4.89.

1,12-Dimethylene-2,11-dithia[**3.3**]**paraparacyclophane 2,2,11,-11-Tetraoxide (28).** Disulfoxide **25** (0.2 g, 0.61 mmol) was oxidized following the general procedure B. Disulfone **28** was obtained as a white solid (0.2 g, 0.58 mmol, 95%) decomposing at 190 °C. TLC R_f 0.82; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 4H, H-14,15,17,18), 7.10 (s, 4H, H-5,6,8,9), 6.61 and 6.17 (two s, 4H, 2 × =CH₂), 4.30 (s, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 148.9 (C-1,12), 131.5 (C-5,6,8,9), 129.8 (C-4,7,13,16), 129.6 (C- 14,15,17,18), 126.8 (2 × =CH₂), 63.6 (C-3,10); Elem anal. Calcd (%) for $C_{18}H_{16}O_4S_2$ (360.45): C, 59.98; H, 4.47. Found: C, 59.92; H, 4.49.

1,12-Dimethylene-2,11-dithia[3.3]parametacyclophane 2,2,11,-11-Tetraoxide (29). A 1:1 mixture of disulfoxides **26** and **27** (0.2 g, 0.61 mmol) was oxidized following the general procedure B. Disulfone **29** was obtained as a white solid (0.2 g, 0.58 mmol, 95%) decomposing at 190 °C. TLC R_f 0.80; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (dd, ³J_{ortho} = 7.9 Hz, ⁴J_{meta} = 1.8 Hz, 2H, H-14,16), 7.23 (t, ³J_{ortho} = 7.9 Hz, 1H, H-15), 7.00 (s, 4H, H-5,6,8,9), 6.56 and 5.99 (two s, 4H, 2 × =CH₂), 5.90 (t, ⁴J_{meta} = 1.8 Hz, 1H, H-18), 4.42 (s, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 149.0 (C-1,12), 133.2 and 128.9 (C-4,7,13,17), 140.4, 140.0, 129.1, 129.0, and 127.2 (C-5,6,8,9,14–16,18), 121.0 (2 × =CH₂), 64.5 (C-3,-10); Elem anal. Calcd (%) for C₁₈H₁₆O₄S₂ (360.45): C, 59.98; H, 4.47. Found: C, 60.25; H, 4.53.

More Mobile 1,3-Bis{[1-(4-ethynylphenyl)ethenylsulfinyl]methyl}benzene 34. Compound 34 was prepared, together with its stereoisomer 35, from 1,4-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] following procedure C (entry 5 in Table 1). The more mobile adduct 34 was isolated after chromatographic separation as a white solid. TLC R_f (EtOAc/ petrol 7.5:2.5) 0.52; ¹H NMR (300 MHz, CDCl₃) δ 7.56 (AA'BB' d, ³ J_{ortho} = 8.5 Hz, 4H, 2 × H-3',5'), 7.42 (AA'BB' d, ³ J_{ortho} = 8.5 Hz, 4H, 2 × H-2',6'), 7.4–7.0 (m, 3H, H-4–6), 6.76 (br s, 1H, H-2), 5.97 and 5.74 (two s, 4H, 2 × =CH₂), 3.95 and 3.54 (AB system, ² J_{gem} = 13.4 Hz, 4H, 2 × SCH₂), 3.20 (s, 2H, 2 × =CH); Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 74.00; H, 4.68.

Less Mobile 1,3-Bis{[1-(4-ethynylphenyl)ethenylsulfinyl]methyl}benzene 35. Compound 35 was prepared, together with its stereoisomer 34, from 1,4-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] following procedure C (entry 5 in Table 1). The less mobile adduct 35 was isolated after chromatographic separation as a white solid. TLC R_f (EtOAc/ petrol 7.5:2.5) 0.51; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (AA'BB' d, ³J_{ortho} = 8.6 Hz, 4H, 2 × H-3',5'), 7.40 (AA'BB' d, ³J_{ortho} = 8.6 Hz, 4H, 2 × H-2',6'), 7.3-7.0 (m, 3H, H-4-6), 6.82 (br s, 1H, H-2), 5.98 and 5.82 (two s, 4H, 2 × =CH₂), 3.92 and 3.56 (AB system, ²J_{gem} = 13.3 Hz, 4H, 2 × SCH₂), 3.20 (s, 2H, 2 × =CH); Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 73.67; H, 4.94.

More Mobile 1,3-Bis{[1-(3-ethynylphenyl)ethenylsulfinyl]methyl}benzene 36. Compound 36 was obtained, together with its diastereoisomer 37 and phanes 39/40, from 1,3-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] following procedure C (entry 6 in Table 1). The more mobile adduct 36 was isolated after chromatographic separation as an oil. TLC R_f (EtOAc/petrol 7.5:2.5) 0.51; ¹H NMR (300 MHz, CDCl₃) δ 7.6– 6.8 (m, 12H, ArH), 5.96 and 5.82 (two s, 4H, 2 × =CH₂), 3.92 and 3.59 (AB system, ² J_{gem} = 13.2 Hz, 4H, 2 × SCH₂), 3.15 (s, 2H, 2 × =CH); Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 74.01; H, 4.95.

Less Mobile 1,3-Bis{[1-(3-ethynylphenyl)ethenylsulfinyl]methyl}benzene 37. Compound 37 was obtained, together with its diastereoisomer 36 and phanes 39/40, from 1,3-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] following procedure C (entry 8 in Table 1). The less mobile 1,3-bis{[1-(3-ethynylphenyl)ethenylsulfinyl]methyl}benzene adduct 37 was isolated after chromatographic separation as an oil. TLC R_f (EtOAc/petrol 7.5:2.5) 0.50; ¹H NMR (300 MHz, CDCl₃) δ 7.6–6.7 (m, 12H, ArH), 5.95 and 5.75 (two s, 4H, 2 × =CH₂), 3.95 and 3.56 (AB system, ² J_{gen} = 13.0 Hz, 4H, 2 × SCH₂), 3.16 (s, 2H, 2 × ≡CH); Elem anal. Calcd (%) for C₂₈H₂₂O₂S₂ (454.61): C, 73.98; H, 4.88. Found: C, 74.03; H, 4.90.

meso-1,12-Dimethylene-2,11-dithia[3.3]metaparacyclophane 2,11-Dioxide (38). Following procedure C (entry 7 in Table 1), compound 38 was prepared from 1,4-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] and isolated

after chromatographic purification as a white solid decomposing at 110 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.09; ¹H NMR (300 MHz, CDCl₃) δ 7.53 and 6.48 (two split d, ⁴J_{meta} = 2.3 Hz, 4H, H-14,15, 17,18), 7.31 (m, 3H, H-5-7), 6.11 and 6.00 (two d, ²J_{gem} = 0.7 Hz, 4H, 2 × =CH₂), 5.42 (br s, 1H, H-9), 4.06 and 3.90 (AB system, ²J_{gem} = 12.6 Hz, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 154.3 (C-1,12), 135.0 and 132.1 (C-4,8,13,16), 129.4, 129.3, and 126.6 (C-5,7,14,15,17,18), 129.2 and 128.7 (C-6,9), 115.8 (2 × =CH₂), 63.7 (C-3,10); Elem anal. Calcd (%) for C₁₈H₁₆O₂S₂ (328.45): C, 65.82; H, 4.91. Found: C, 65.90; H, 4.95.

rac-1,12-Dimethylene-2,11-dithia[3.3]metametacyclophane 2,-11-Dioxide (40). Racemate 40 was prepared, together with its mesoisomer 39, from 1,3-diethynylbenzene and disulfoxide 12 [(via 1,3benzenedimethanesulfenic acid (17)] following procedure C (entry 8 in Table 1). The more mobile 40 was isolated after chromatographic purification as a white solid decomposing at 60 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.12; ¹H NMR (300 MHz, CDCl₃) δ 7.2-7.0 (m, 6H, H-5-7,14-16), 6.80 (s, 1H, H-18), 6.20 (br s, 1H, H-9), 6.10 and 6.01 (two s, 4H, $2 \times = CH_2$), 4.28 and 3.92 (AB system, ${}^{2}J_{\text{gem}} = 13.1$ Hz, 4H, H₂-3,10); 13 C NMR (75 MHz, CDCl₃) δ 152.6 (C-1,12), 135.0 and 130.4 (C-4,8,13,17), 132.8, 129.6, 129.2, 129.0 and 127.1 (C-5-7,9,14-16,18), 117.4 ($2 \times = CH_2$), 63.2 (C-3,10); MS (70 eV, EI) m/z (%) 328 (1) [M⁺], 105 (6), 104 (4), 84 (3), 77 (5), 49 (3), 44 (7), 40 (6), 32 (100), 29 (6); Elem anal. Calcd (%) for C₁₈H₁₆O₂S₂ (328.45): C, 65.82; H, 4.91. Found: C, 65.72; H, 4.85.

meso-1,12-Dimethylene-2,11-dithia[3.3]metametacyclophane 2,11-Dioxide (39). meso-Compound 39 was prepared, together with its racemate isomer 40, from 1,3-diethynylbenzene and disulfoxide 12 [(via 1,3-benzenedimethanesulfenic acid (17)] following procedure C (entry 8 in Table 1). The less mobile CP 39 was isolated after chromatographic purification as a white solid decomposing at 115 °C. Single crystals suitable for X-ray structure were obtained by recrystallization from CHCl₃. TLC R_f (EtOAc/petrol 7.5:2.5) 0.10; ¹H NMR (300 MHz, CDCl₃) δ 7.1-6.9 (m, 8H, H-5-7,9,-14–16,18), 6.21 and 6.06 (two d, ${}^{2}J_{gem} = 0.5$ Hz, 4H, 2 × =CH₂), 4.54 and 3.83 (AB system, ${}^{2}J_{gem} = 12.3$ Hz, 4H, H₂-3,10); ${}^{13}C$ NMR (75 MHz, CDCl₃) δ 153.4 (C-1,12), 135.6 and 130.2 (C-4,8,13,17), 129.7, 129.5, 128.8, and 127.2 (C-5-7,9,14-16,-18), 117.1 (2 \times =CH₂), 64.4 (C-3,10); IR (CHCl₃) 3031, 1047 (SO), 908 cm⁻¹; MS (70 eV, EI) m/z (%) 328 (2) [M⁺], 263 (3), 229 (3), 105 (3), 104 (10), 103 (4), 78 (4), 32 (18), 28 (100); Elem anal. Calcd (%) for C₁₈H₁₆O₂S₂ (328.45): C, 65.82; H, 4.91. Found: C, 65.75; H, 4.95.

1,12-Dimethylene-2,11-dithia[3.3]metametacyclophane 2,2,-11,11-Tetraoxide (41). A 1:1 mixture of disulfoxides **39** and **40** (0.1 g, 0.30 mmol) was oxidized following the general procedure B. Disulfone **41** was obtained as a white solid (0.1 g, 0.28 mmol, 93%) decomposing at 185 °C. TLC R_f 0.80; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (dd, ³J_{ortho} = 7.9 Hz, ⁴J_{meta} = 1.8 Hz, 2H, H-14,16), 7.44 (t, ⁴J_{meta} = 1.7 Hz, 1H, H-18), 7.3–7.1 (m, 4H, H-5–7,15), 6.57 and 6.07 (two s, 4H, 2 × =CH₂), 6.50 (br s, 1H, H-9), 4.28 (s, 4H, H₂-3,10); ¹³C NMR (75 MHz, CDCl₃) δ 149.0 (C-1,12), 133.3 and 128.4 (C-4,8,13,17), 134.0, 132.9, 131.5, 129.8, 129.1 and 128.5 (C-5–7,9,14–16,18), 127.2 (2 × =CH₂), 62.2 (C-3,-10); MS (70 eV, EI) *m/z* (%) 360 (14) [M⁺], 231 (33), 217 (86), 216 (70), 202 (73), 192 (33), 191 (33), 127 (55), 28 (100); Elem anal. Calcd (%) for C₁₈H₁₆O₄S₂ (360.45): C, 59.98; H, 4.47. Found: C, 59.67; H, 4.16.

More Mobile 1,3-Bis[1-(4-ethynylphenyl)ethenylsulfinyl]benzene 30. Compound 30 was prepared, together with its stereoisomer 31, from 1,4-diethynylbenzene and disulfoxide 13 [(via 1,3-benzenedisulfenic acid (18)] following procedure C (entries 9 and 10 in Table 1). The more mobile adduct 30 was isolated after chromatographic separation as a light yellow solid melting at 164 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.72; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (t, ⁴ $J_{meta} = 1.7$ Hz, 1H, H-2), 7.41 (AA' m, ³ $J_{ortho} =$ 8.5 Hz, 4H, 2 × H-3',5'), 7.34 (m, ³ $J_{ortho} =$ 8.5 Hz, ⁴ $J_{meta} =$ 1.7 Hz, 1H) and 7.33 (m, ³ $J_{ortho} =$ 6.5 Hz, ⁴ $J_{meta} =$ 1.7 Hz, 1H, H-4,6), 7.25 (dd, ³*J*_{ortho} = 8.5 and 6.5 Hz, 1H, H-5), 7.05 (BB' m, ³*J*_{ortho} = 8.5 Hz, 4H, 2 × H-2',6'), 6.16 and 5.86 (two d, ²*J*_{gem} = 0.9 Hz, 4H, 2 × =CH₂), 3.17 (s, 2H, 2 × ≡CH); ¹H NMR (400 MHz, C₆D₆) δ 7.62 (t, ⁴*J*_{meta} = 1.6 Hz, 1H, H-2), 7.12 (AA' m, ³*J*_{ortho} = 8.4 Hz, 4H, 2 x H-3',5'), 6.95 (dd, ³*J*_{ortho} = 7.7 Hz, ⁴*J*_{meta} = 1.6 Hz, 2H, H-4,6), 6.58 (BB' m, ³*J*_{ortho} = 8.4 Hz, 4H, 2 × H-2',6'), 6.39 (t, ³*J*_{ortho} = 7.7 Hz, 1H, H-5), 6.12 and 5.36 (two s, 4H, 2 × =CH₂), 2.68 (s, 2H, 2 × ≡CH); ¹³C NMR (75 MHz, CDCl₃) δ 153.3 (2 × C=CH₂), 144.3 (C-1,3), 133.4 (2 × C-1'), 132.3 (2 × C-3',5'), 129.3 (C-5), 127.3 and 127.2 (C-4,6, 2 × C-2',6'), 123.1 (2 × C-4'), 120.8 (C-2), 117.1 (2 × ≡CH₂), 82.6 (2 × C≡CH), 79.1 (2 × ≡CH); MS (70 eV, EI) *m/z* (%) 426 (0.1) [M⁺], 300 (10), 129 (12), 128 (12), 127 (100), 126 (16), 101 (10), 77 (16), 51 (10); Elem anal. Calcd (%) for C₂₆H₁₈O₂S₂ (426.55): C, 73.21; H, 4.25. Found: C, 73.58; H, 4.58.

Less Mobile 1,3-Bis[1-(4-ethynylphenyl)ethenylsulfinyl]benzene **31.** Compound **31** was prepared, together with its stereoisomer **30**, from 1,4-diethynylbenzene and disulfoxide 13 [(via 1,3-benzenedisulfenic acid (18)] following procedure C (entries 9 and 10 in Table 1). The less mobile adduct 31 was isolated after chromatographic separation as a light yellow solid melting at 125 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.69; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (t, ${}^{4}J_{\text{meta}} = 1.6$ Hz, 1H, H-2), 7.38 (AA' m, ${}^{3}J_{\text{ortho}} = 8.5$ Hz, 4H, $2 \times$ H-3',5'), 7.4–7.3 (m, 2H, H-4,6), 7.27 (dd, ${}^{3}J_{ortho} = 8.7$ and 6.4 Hz, 1H, H-5), 7.07 (BB' m, ${}^{3}J_{\text{ortho}} = 8.5$ Hz, 4H, 2 × H-2',6'), 6.21 and 5.93 (two d, ${}^{2}J_{\text{gem}} = 0.8$ Hz, 4H, 2 × =CH₂), 3.15 (s, 2H, 2 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ 153.0 (2 × C= CH₂), 144.2 (C-1,3), 133.2 (2 × C-1'), 132.3 (2 × C-3',5'), 129.5 (C-5), 127.5 and 127.3 (C-4,6, 2 × C-2',6'), 123.1 (2 × C-4'), 121.6 (C-2), 118.6 (2 × =CH₂), 82.6 (2 × C=CH), 79.0 (2 × =CH); Elem anal. Calcd (%) for C₂₆H₁₈O₂S₂ (426.55): C, 73.21; H, 4.25. Found: C, 73.18; H, 4.50.

More Mobile 1,3-Bis[1-(3-ethynylphenyl)ethenylsulfinyl]benzene 32. Compound 32 was prepared, together with its stereoisomer 33, from 1,3-diethynylbenzene and disulfoxide 13 [(via 1,3-benzenedisulfenic acid (18)] following procedure C (entries 11 and 12 in Table 1). The more mobile adduct 32 was isolated after chromatographic separation as a light yellow solid melting at 78 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.72; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (t, ⁴*J*_{meta} = 1.5 Hz, 1H, H-2), 7.45 (dt, ³*J*_{ortho} = 7.7, ${}^{4}J_{\text{meta}} = 1.4 \text{ Hz}, 2\text{H}, 2 \times \text{H-4' or H-6'}, 7.3-7.2 \text{ (m, 3H, H-4-6)},$ 7.27 (t, ${}^{3}J_{\text{ortho}} = 7.7$ Hz, 2H, 2 × H-5'), 7.22 (t, ${}^{4}J_{\text{meta}} = 1.4$ Hz, 2H, 2 × H-2'), 7.07 (dt, ${}^{3}J_{\text{ortho}} = 7.7$, ${}^{4}J_{\text{meta}} = 1.4$ Hz, 2H, 2 × H-4' or H-6'), 6.14 and 5.83 (two d, ${}^{2}J_{\text{gem}} = 0.8$ Hz, 4H, 2 × = CH₂), 3.13 (s, 2H, 2 × \equiv CH); ¹³C NMR (75 MHz, CDCl₃) δ 153.3 $(2 \times C = CH_2)$, 144.3 (C-1,3), 133.5 $(2 \times C - 1')$, 132.8 $(2 \times C - 4')$, 130.9 (2 × C-2'), 129.3 (C-5), 128.8, 127.8, and 127.2 (C-4,6, 2 × C-5',6'), 122.9 (2 × C-3'), 120.7 (C-2), 117.4 (2 × = CH_2), 82.5 $(2 \times C \equiv CH)$, 78.5 $(2 \times \equiv CH)$; Elem anal. Calcd (%) for C₂₆H₁₈O₂S₂ (426.55): C, 73.21; H, 4.25. Found: C, 73.34; H, 4.16.

Less Mobile 1,3-Bis[1-(4-ethynylphenyl)ethenylsulfinyl]benzene 33. Compound 33 was prepared, together with its stereoisomer 32, from 1,3-diethynylbenzene and disulfoxide 13 [(via 1,3-benzenedisulfenic acid (18)] following procedure C (entries 11 and 12 in Table 1). The less mobile adduct 33 was isolated after chromatographic separation as a light yellow solid melting at 130 °C. TLC R_f (EtOAc/petrol 7.5:2.5) 0.69; ¹H NMR (300 MHz, CDCl₃) δ 7.62 (t, ${}^{4}J_{\text{meta}} = 1.8$ Hz, 1H, H-2), 7.42 (dt, ${}^{3}J_{\text{ortho}} = 7.6$, ${}^{4}J_{\text{meta}} =$ 1.5 Hz, 2H, 2 × H-4' or H-6'), 7.35 (m, 2H, H-4,6), 7.27 (dd, ${}^{3}J_{ortho}$ = 8.7 and 6.4, 1H, H-5), 7.24 (t, ${}^{4}J_{\text{meta}}$ = 1.5 Hz, 2H, 2 × H-2'), 7.23 (t, ${}^{3}J_{\text{ortho}} = 7.6$ Hz, 2H, 2 × H-5'), 7.06 (dt, ${}^{3}J_{\text{ortho}} = 7.6$, ${}^{4}J_{\text{meta}} = 1.5$ Hz, 2H, 2 × H-4' or H-6'), 6.21 and 5.92 (two d, ${}^{2}J_{\text{gem}} = 0.8$ Hz, 4H, 2 × =CH₂), 3.10 (s, 2H, 2 × =CH); ${}^{13}\text{C}$ NMR (75 MHz, CDCl₃) δ 153.0 (2 × C=CH₂), 144.2 (C-1,3), 133.3 (2 \times C-1'), 132.9 (2 \times C-4'), 131.0 (2 \times C-2'), 129.4 (C-5), 128.7, 127.9, and 127.7 (C-4,6, 2 \times C-5',6'), 122.8 (2 \times C-3'), 121.6 (C-2), 118.6 (2 × =CH₂), 82.6 (2 × C=CH), 78.4 (2 × \equiv CH); Elem anal. Calcd (%) for C₂₆H₁₈O₂S₂ (426.55): C, 73.21; H, 4.25. Found: C, 73.19; H, 4.60.

*C*₃*sym*-1,3,5-Tris{[1-(phenyl)ethenylsulfinyl]methyl}benzene (42). Compound 42 was prepared, together with its diastereoisomer 43, from phenylacetylene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 13 in Table 1). The more mobile adduct 42 was isolated after chromatographic separation as a light yellow low-melting solid. TLC *R_f* (EtOAc/petrol 9:1) 0.46; ¹H NMR (300 MHz, CDCl₃) δ 7.5–7.4 (m, 15H, 3 × H-2'-6'), 6.79 (s, 3H, H-2,4,6), 5.97 and 5.70 (two s, 6H, 3 × =CH₂), 3.95 and 3.48 (AB system, ²*J*_{gem} = 13.3 Hz, 6H, 3 × SCH₂); ¹³C NMR (75 MHz, CDCl₃) δ 150.9 (3 × *C*=CH₂), 133.9 (C-1,3,5), 132.6 (C-2,4,6), 129.5 (3 × C-4'), 129.4 (3 × C-1'), 129.3 (3 × C-3',5'), 126.6 (3 × C-2',6'), 118.4 (3 × =CH₂), 56.8 (3 × SCH₂); Elem anal. Calcd (%) for C₃₃H₃₀O₃S₃ (570.78): C, 69.44; H, 5.30. Found: C, 69.52; H, 5.68.

 $noC_{3}sym-1,3,5$ -Tris{[1-(phenvl)ethenvlsulfinvl]methvl}benzene (43). Compound 43 was prepared, together with its diastereoisomer 42, from phenylacetylene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 13 in Table 1). The less mobile adduct 43 was isolated after chromatographic separation as a light yellow low-melting solid. TLC R_f (EtOAc/petrol 9:1) 0.45; ¹H NMR (300 MHz, CDCl₃) δ 7.5-7.4 (m, 15H, 3 × H-2'-6'), 6.84 (s, 2H) and 6.78 (s, 1H) (H-2,4,6), 5.98 and 5.82 (two s, 2H, =CH₂), 5.97 and 5.74 (two s, 4H, 2 \times CH₂), 3.91 and 3.51 (AB system, $^2\!J_{gem}$ = 13.2 Hz, 4H, 2 × SCH₂), 3.89 and 3.55 (AB system, ${}^{2}J_{gem} = 12.8$ Hz, 2H, SCH₂); ${}^{13}C$ NMR (75 MHz, CDCl₃) δ 151.7 and 151.2 (3 × C=CH₂), 133.9 (C-1,3,5), 132.2 and 132.1 (C-2,4,6), 130.3 and 130.0 (3 \times C-1'), 129.5 (3 × C-4'), 129.3 (3 × C-3',5'), 126.6 (3 × C-2',6'), 118.3 and 118.1 (3 \times =CH₂), 58.1 and 57.3 (3 \times SCH₂); Elem anal. Calcd (%) for C33H30O3S3 (570.78): C, 69.44; H, 5.30. Found: C, 69.38; H, 5.45.

 (R^*, R^*, R^*) - and (R^*, R^*, S^*) -1,12,19-Trimethylene-2,11,20trithia[3₃](1,3,5)cyclophane 2,11,20-Trioxides (48) and (49). C₃-Symmetrical 48 was prepared, together with its stereoisomer 49, from 1,3,5-triethynylbenzene and trisulfoxide 14 [(via 1,3,5benzenetrimethanesulfenic acid (19)] following procedure C (entry 16 in Table 1). After chromatographic purification, various mixtures of the cage compounds 48/49 as white solids were obtained; TLC R_f (EtOAc/petrol 9:1) 0.03; Elem anal. Calcd (%) for C₂₁H₁₈O₃S₃ (414.56): C, 60.84; H, 4.38. Found: C, 60.72; H, 4.30. The following NMR data come from suitably enriched mixtures: ¹H NMR of (R*,R*,R*)-1,12,19-trimethylene-2,11,20-trithia[3₃](1,3,5)cyclophane 2,11,20-trioxide (**48**; 300 MHz, CDCl₃) δ 7.11 and 6.92 (two br s, 6H, ArH), 6.21 and 6.04 (two d, ${}^{2}J_{gem} = 0.6$ Hz, 6H, $3 \times =$ CH₂), 4.62 and 3.77 (AB system, ${}^{2}J_{gem} = 12.1$ Hz, 6H, H₂-3,10,21). ¹H NMR of (R^*, R^*, S^*)-1,12,19-trimethylene-2,11,20trithia[3₃](1,3,5)cyclophane 2,11,20-trioxide (49; 300 MHz, CDCl₃) δ 7.2–6.6 (m, 6H, ArH), 6.2–6.0 (m, 6H, 3 × =CH₂), 4.5–3.8 (m, 6H, H₂-3,10,21).

1,12,19-Trimethylene-2,11,20-trithia[3₃](1,3,5)cyclophane 2,2,-11,11,20,20-Hexaoxide (50). A mixture of trisulfoxides **48** and **49** (0.1 g, 0.24 mmol) was oxidized following the general procedure B. Trisulfone **50** was obtained as a white solid (0.1 g, 0.22 mmol, 92%) decomposing at 250 °C. TLC R_f 0.78; ¹H NMR (300 MHz, CDCl₃) δ 7.78 and 7.50 (two s, 6H, ArH), 6.69 and 6.09 (two s, 6H, 3 × =CH₂), 4.39 (s, 6H, 3 × SCH₂); MS (70 eV, EI) m/z (%) 462 (7) [M⁺], 270 (29), 239 (23), 104 (31), 57 (25), 55 (21), 44 (93), 43 (35), 41 (21), 32 (100); Elem anal. Calcd (%) for C₂₁H₁₈O₆S₃ (462.56): C, 54.53; H, 3.92. Found: C, 54.31; H, 4.00.

(*R**,*R**,*R**)-5,7,9-Trimethyl-1,12,19-trimethylene-2,11,20-trithia-[3₃](1,3,5)cyclophane 2,11,20-Trioxide (51). Cage 51 was prepared, together with its diastereoisomer 52, from 1,3,5-triethynylbenzene and trisulfoxide 15 [(via 2,4,6-trimethyl-1,3,5benzenetrimethanesulfenic acid (20)] following procedure C (entry 17 in Table 1). The more mobile adduct 51 was isolated after chromatographic separation as a white solid decomposing at 180 °C. TLC *R_f* (EtOAc/petrol 9:1) 0.05; ¹H NMR (300 MHz, CDCl₃) δ 7.24 (s, 3H, ArH), 6.20 and 6.10 (two s, 6H, 3 × =CH₂), 4.60 and 4.17 (AB system, ²*J*_{gem} = 12.6 Hz, 6H, H₂-3,- 10,21), 2.40 (s, 9H, 3 \times Me); Elem anal. Calcd (%) for $C_{24}H_{24}O_3S_3$ (456.64): C, 63.13; H, 5.30. Found: C, 63.26; H, 5.65.

(*R**,*R**,*S**)-5,7,9-Trimethyl-1,12,19-trimethylene-2,11,20-trithia-[3₃](1,3,5)cyclophane 2,11,20-Trioxide (52). Cage 52 was prepared, together with its diastereoisomer 51, from 1,3,5-triethynylbenzene and trisulfoxide 15 [(via 2,4,6-trimethyl-1,3,5benzenetrimethanesulfenic acid (20)] following procedure C (entry 17 in Table 1). The less mobile adduct 52 was isolated after chromatographic separation as a white solid decomposing at 180 °C. TLC *R_f* (EtOAc/petrol 9:1) 0.04; ¹H NMR (300 MHz, CDCl₃) δ 7.6–6.9 (m, 3H, ArH), 6.30, 6.19, 6.13, 6.12, 6.08, and 6.05 (six s, 6H, 3 × =CH₂), 4.8–4.0 (m, 6H, H₂-3,10,21), 2.72, 2.11, and 2.05 (three s, 9H, 3 × Me); Elem anal. Calcd (%) for C₂₄H₂₄O₃S₃ (456.64): C, 63.13; H, 5.30. Found: C, 63.10; H, 5.37.

5,7,9-Trimethyl-1,12,19-trimethylene-2,11,20-trithia[**3**₃](**1,3,5**)cyclophane 2,2,11,11,20,20-Hexaoxide (53). A mixture of trisulfoxides **51** and **52** (0.2 g, 0.44 mmol) was oxidized following the general procedure B. Trisulfone **53** was obtained as a white solid (0.2 g, 0.40 mmol, 91%), decomposing at 250 °C. TLC R_f 0.80; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 3H, ArH), 6.71 and 6.19 (two d, ² J_{gem} = 0.8 Hz, 6H, 3 × =CH₂), 4.73 (s, 6H, 3 × SCH₂), 2.50 (s, 9H, 3 × Me); Elem anal. Calcd (%) for C₂₄H₂₄O₆S₃ (504.64): C, 57.12; H, 4.79. Found: C, 57.31; H, 4.55.

 C_{3} sym-1,3,5-Tris{[1-(4-ethynylphenyl)ethenylsulfinyl]methyl}benzene (46). Compound 46 was prepared, together with its diastereoisomer 47, from 1,4-diethynylbenzene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 15 in Table 1). The more mobile adduct 46 was isolated after chromatographic separation as a yellow solid melting at 95 °C. TLC R_f (EtOAc/petrol 9:1) 0.77; ¹H NMR (300 MHz, CDCl₃) δ 7.57 and 7.48 (AA'BB' system, ${}^{3}J_{\text{ortho}} = 8.5$ Hz, 12H, 3 × H-2',3',5',6'), 6.73 (s, 3H, H-2,4,6), 6.02 and 5.69 (two s, 6H, $3 \times = CH_2$), 3.93 and 3.47 (AB system, ${}^2J_{gem} = 13.3$ Hz, 6H, $3 \times$ SCH₂), 3.21 (s, 3H, 3 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ 149.8 (3 × C=CH₂), 134.1 (C-1,3,5), 133.0 (3 × C-3',5'), 132.8 (C-2,4,6), 128.9 $(3 \times C-1')$, 126.5 $(3 \times C-2',6')$, 123.4 $(3 \times C-4')$, 119.4 (3 \times =CH₂), 82.8 (3 \times C=CH), 79.1 (3 \times =CH), 56.3 $(3 \times \text{SCH}_2)$; MS (FAB) m/z (%) 643 (9) [M + 1], 391 (19), 155 (46), 149 (27), 139 (21), 138 (54), 137 (100), 120 (19), 107 (32), 89 (29), 77 (25); Elem anal. Calcd (%) for C₃₉H₃₀O₃S₃ (642.85): C, 72.87; H, 4.70. Found: C, 73.26; H, 4.68.

no*C*₃*sym*-1,3,5-Tris{[1-(4-ethynylphenyl)ethenylsulfinyl]**methyl**}**benzene** (47). Compound 47 was prepared, together with its diastereoisomer 46, from 1,4-diethynylbenzene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 15 in Table 1). The less mobile adduct 47 was isolated after chromatographic separation as a yellow solid melting at 97 °C. TLC *R*_{*f*} (EtOAc/petrol 9:1) 0.73; ¹H NMR (300 MHz, CDCl₃) δ 7.6–7.4 (m, 12H, 3 × H-2',3',5',6'), 6.80 (s, 2H) and 6.75 (s, 1H) (H-2,4,6), 6.02 and 5.86 (two s, 2H, =CH₂), 6.00 and 5.77 (two s, 4H, 2 × CH₂), 3.90 and 3.51 (AB system, ²*J*_{gem} = 13.1 Hz, 4H, 2 × SCH₂), 3.87 and 3.54 (AB system, ²*J*_{gem} = 13.1 Hz, 2H, SCH₂), 3.21 (s, 2H, 2 × ≡CH), 3.20 (s, 1H, ≡CH); ¹³C NMR (75 MHz, CDCl₃) δ 151.0 and 150.4 (3 × C=CH₂), 134.1 (C-1,3,5), 133.0 (3 × C-3',5'), 132.3 and 132.1 (C-2,4,6), 130.1 and 129.8 (3 × C-1'), 126.6 and 126.5 (3 × C-2',6'), 123.4 (3 × C-4'), 119.2 and 118.9 (3 × =CH₂), 82.7 (3 × C=CH), 79.1 (3 × =CH), 58.1 and 57.1 (3 × SCH₂); Elem anal. Calcd (%) for C₃₉H₃₀O₃S₃ (642.85): C, 72.87; H, 4.70. Found: C, 72.62; H, 4.85.

*C*₃*sym*-1,3,5-Tris{[1-(3,5-diethynylphenyl)ethenylsulfinyl]methyl}benzene (44). Compound 44 was prepared, together with its diastereoisomer 45 and the cages 48/49, from 1,3,5-triethynylbenzene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 14 in Table 1). The more mobile adduct 44 was isolated after chromatographic separation as a yellow solid melting at 94 °C. TLC R_f (EtOAc/petrol 9:1) 0.80; ¹H NMR (300 MHz, CDCl₃) δ 7.6–7.5 (m, 9H, 3 × H-2',3',5'), 6.70 (s, 3H, H-2,4,6), 5.98 and 5.73 (two d, ${}^{2}J_{\text{gem}} = 0.6$ Hz, 6H, $3 \times = CH_2$), 3.95 and 3.54 (AB system, ${}^{2}J_{gem} = 13.2$ Hz, 6H, 3 × SCH₂), 3.18 (s, 6H, 6 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ 149.2 (3 × $C=CH_2$), 136.2 (3 × C-4'), 134.6 (C-1,3,5), 132.6 $(3 \times C-2', 6')$, 130.3 (C-2,4,6), 129.0 $(3 \times C-1')$, 123.6 $(3 \times C-3', 5')$, 120.4 (3 × =CH₂), 81.7 (3 × C=CH), 79.3 (3 × =CH), 56.5 $(3 \times \text{SCH}_2)$; Elem anal. Calcd (%) for C₄₅H₃₀O₃S₃ (714.92): C, 75.60; H, 4.23. Found: C, 75.66; H, 4.55.

noC₃sym-1,3,5-Tris{[1-(3,5-diethynylphenyl)ethenylsulfinyl]methyl}benzene (45). Compound 45 was prepared, together with its diastereoisomer 44 and the cages 48/49, from 1,3,5-triethynylbenzene and trisulfoxide 14 [(via 1,3,5-benzenetrimethanesulfenic acid (19)] following procedure C (entry 14 in Table 1). Compound 45 was isolated after chromatographic separation as a yellow solid melting at 110 °C. TLC R_f (EtOAc/petrol 9:1) 0.76; ¹H NMR (300 MHz, CDCl₃) δ 7.6–7.5 (m, 9H, 3 × H-2',3',5'), 6.78 (s, 2H) and 6.75 (s, 1H) (H-2,4,6), 6.00 and 5.90 (two d, ${}^{2}J_{\text{gem}} =$ 0.6 Hz, 2H, =CH₂), 5.99 and 5.83 (two d, ${}^{2}J_{gem} = 0.8$ Hz, 4H, $2 \times = CH_2$), 3.91 and 3.59 (AB system, ${}^2J_{gem} = 13.2$ Hz, 4H, $2 \times \text{SCH}_2$), 3.87 and 3.61 (AB system, ${}^2J_{\text{gem}} = 13.1 \text{ Hz}$, 2H, SCH₂), 3.18 (s, 6H, 6 × =CH); ¹³C NMR (75 MHz, CDCl₃) δ 150.0 and 149.6 (3 \times C=CH₂), 136.2 (3 \times C-4'), 134.6 (C-1,3,5), 132.4 and 132.0 (3 \times C-2',6'), 130.4 and 130.3 (C-2,4,6), 129.8 and 129.7 $(3 \times C-1')$, 123.63 and 123.61 $(3 \times C-3',5')$, 120.3 $(3 \times =CH_2)$, 81.7 (3 × $C \equiv CH$), 79.3 (3 × $\equiv CH$), 58.0 and 57.4 (3 × SCH₂); Elem anal. Calcd (%) for C45H30O3S3 (714.92): C, 75.60; H, 4.23. Found: C, 75.42; H, 4.33.

Acknowledgment. We thank the Università degli Studi di Messina for financial support (PRA project) and Prof. S. Pappalardo (Università degli Studi di Catania, Italy) for helpful discussion.

Supporting Information Available: Experimental details of X-ray crystallographic analyses, crystallographic data, and CIF files of compounds **21** and **39** and ¹H and ¹³C NMR spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO070449B